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Abstract--Mylonitic rocks and rock-analogue materials reveal two basic types of structure: (1) a load-bearing 
framework (LBF) of strong phase contains isolated pockets of weak phase; (2) interconnected layers of weak 
phase (IWL) separate boudins and clasts of strong phase. Aggregates with the LBF microstructure are 
characterized by nearly uniform strain rate. Stress is concentrated in the load-bearing framework. In aggregates 
with an IWL microstructure, strain rate and sometimes also stress are higher in the interconnected weak phase 
than in the boudins and clasts of strong phase. The degree of stress and strain partitioning depends strongly on the 
viscous strength contrast and on the relative amounts of the constituent mineral phases. Based on these 
observations, the rheology of two-phase rock is modelled with separate functions for LBF and IWL microstruc- 
tures. A new flow law is derived for rock with IWL structure in which two phases undergo dislocation creep. The 
flow law expresses composite creep strength in terms of temperature, bulk strain rate and the volume proportions 
and creep parameters of the minerals in the rock. Strain rate and stress are averaged in the constituent phases and 
slip along phase boundaries maintains strain compatibility within the aggregate. Composite strengths predicted 
with the IWL flow law fall well within the uniform stress and uniform strain rate bounds and are generally 
consistent with the viscous strengths of experimentally deformed bimineralic aggregates. A hypothesis of viscous 
strain energy minimization is used to determine the relative stability of the LBF and IWL microstructures. 
During steady-state creep, the IWL microstructure is predicted to be stable over a broad range of two-phase 
compositions and mineral strength contrasts, whereas the LBF microstructure is stable only in rocks with low 
volume proportions of weak phase and low to moderate mineral strength contrasts. The lWL flow law indicates 
that rheological stratification in the lithosphere depends strongly on rock composition, especially in rocks with 
low volume proportions of a weak phase and high mineral strength contrasts. 

I N T R O D U C T I O N  

M o s t  rocks  in the  i n t e r m e d i a t e  to  d e e p  crust  and  in the  
man t l e  con ta in  one  o r  m o r e  mine ra l  o r  mel t  phases  with 
non - l i nea r  t e m p e r a t u r e ,  s t ra in  ra te  and  gra in  size de-  
p e n d e n t  rheo log ies .  The  p r o b l e m  of  der iv ing  a flow law 
for  such viscous c o m p o s i t e  ma te r i a l s  has vexed  physi -  
cists,  eng inee r s  and  e a r t h  scient is ts  for  m a n y  years  and  
a p p r o a c h e s  to an analy t ica l  so lu t ion  have  a d v a n c e d  
a long  bo th  e x p e r i m e n t a l  and  theore t i ca l  l ines ( review in 
H a n d y  1990). 

The  inves t iga t ion  of  c o m p o s i t e  ma te r i a l s  revea ls  tha t  
the i r  r heo logy  is i n t ima te ly  r e l a t ed  to the i r  s t ruc ture .  
Two  basic  k inds  of  mic ros t ruc tu re  a re  d i s t ingu ished  in 
na tu ra l ly  and  e x p e r i m e n t a l l y  d e f o r m e d  two-phase  
aggrega tes  (Fig.  1, s impl i f ied  f rom H a n d y  1990): (1) the  
s t ronge r  phase  forms  a l o a d - b e a r i n g  f r a m e w o r k  ( L B F  
s t ruc ture )  tha t  con ta ins  pocke t s  of  the  w e a k e r  phase ;  
(2) the  w e a k e r  phase  forms  an i n t e r c o n n e c t e d  weak  
mat r ix  or  layers  ( I W L  s t ruc ture )  s epa ra t ing  boud ins  o r  
clasts  o f  the  s t ronge r  phase .  In  this  p a p e r ,  a ' pha se '  is any  
m a t e r i a l  with d is t inc t ive  rheo log ica l  p rope r t i e s .  The  
adjec t ives  ' w e a k '  and  ' s t r ong '  desc r ibe  the  re la t ive  
s t rengths  of  two phases  ou t s ide  the i r  host  c o m p o s i t e  
ma te r i a l  at  a r e f e rence  s t ra in  ra te  and  t e m p e r a t u r e .  T h e  
ra t io  of  these  s t rengths  is the  viscous s t reng th  con t ras t ,  
re, o r  c o m p e t e n c e  con t ras t  of  the  two ma te r i a l s  (see 
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Fig. 1. Microstructures in deformed two-phase viscous materials as a 
function of the volume proportion of the weaker phase ( ~ ,  horizontal 
axis) and viscous strength contrast between the strong and weak 
phases (re, vertical axis). LBF and IWL are abbreviations for 'load- 
bearing framework' and 'interconnected weak layer' microstructures. 

R a m s a y  & H u b e r  1987, p. 7) and  is an abso lu te  measu re  
of  the i r  re la t ive  de fo rmab i l i t y .  

F o r  a given bu lk  s t ra in ,  the  aspec t  ra t io  of  the  i so la ted  
phases  within bo th  L B F  and I W L  s t ruc tures  is inverse ly  
and non- l inea r ly  r e l a t ed  to the  viscous s t reng th  con t ras t  
b e t w e e n  the  cons t i tuen t  phases  at  the  bu lk  s t ra in  ra te  
( G a y  1968, Bi lby  et al. 1975, F r e e m a n  1987) (Fig.  1). 
Stress  and  s t ra in  pa r t i t ion ing  amongs t  the  phases  
d e p e n d s  on the con t ras t  in rheo log ica l  p r o p e r t i e s  of  the  
cons t i tuen t  phases  ( C o b b o l d  1983, T reagus  & Sokou t i s  
1992, W e i j e r m a r s  1992) and on the  vo lume  p r o p o r t i o n s  
of  the  phases  in the  c o m p o s i t e  mate r ia l .  A t  s t rength  
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ratios near unity, both phases deform almost homogene- 
ously and form lenticular, interconnected layers that are 
oriented subparallel to the plane of shear, regardless of 
their relative abundance in the rock (fig. 1.8 in Ramsay 
& Huber 1987). 

In view of this close relationship between structure 
and rheology, it seems surprising that rock composition 
and structure are not incorporated into current rheologi- 
cal models of Earth's lithosphere. This reflects the 
mathematical complexity of modelling heterogeneous 
flow in composite materials like rock, whose constituent 
phases usually have non-linear, viscoplastic rheologies 
(review in Carter & Tsenn 1987). A common, relatively 
simple approach to determining the bulk rheology of 
such material involves the limiting assumptions that 
either strain rate or stress is homogeneous within the 
aggregate, These end-member conditions, correspond- 
ing respectively to the Voigt and Reuss elastic bounds 
(e.g. Hill 1965), provide rigorous upper and lower limits 
to the actual viscous strength of the rock. At both 
bounds, the strength of the composite depends on the 
volume proportions and rheologies of the constituent 
phases (e.g. see equations 2-6 in Tullis et al. 1991). In 
the upper bound case, each grain or phase in the aggre- 
gate deforms compatibly with its neighbour, whereas at 
the lower bound, every phase is subject to the same 
stress, regardless of its rheology, shape or position in the 
microstructure. Of course, neither bounding condition 
is realistic. The dissimilar rheologies of the constituent 
phases give rise to stress differences and strain incom- 
patibilities within the aggregate. In naturally deformed 
rock, such incompatibilities are relaxed by slip at phase 
boundaries, dynamic recovery and recrystallization, tex- 
ture weakening, pressure solution and cataclasis (e.g. 
White et al. 1980). Thus, the bulk strength of non-linear 
viscous materials lies somewhere between the viscous 
strength at the uniform strain rate and uniform stress 
bounds. Although these bounds certainly provide closer 
constraints on actual bulk strength than extrapolated 
flow laws for the constituent phases, the bounding 
theorems method becomes less accurate as the bounds 
diverge with increasing contrast in the theological 
properties of the phases. Averaging the bulk strength at 
the two bounds (Voigt-Reuss-Hill method) yields 
reasonable estimates of composite strength, but is physi- 
cally unfounded and implies that the strength of the 
constituent phases lies between their individual 
strengths at the bounds. As demonstrated in the next 
section, this is untenable for rock with an IWL micro- 
structure. 

Another approach is the self-consistent theory, so 
called because the average stress and strain rate of the 
matrix surrounding any given grain within a polyphase 
aggregate are equated with the stress and strain rate of 
the aggregate itself. This constrains the behaviour of any 
given grain to satisfy both stress equilibrium and strain 
compatibility with the aggregate as a whole, rather than 
with its neighbouring grains. Because strain compat- 
ibility is only maintained on the aggregate scale, local 
compatibility is relaxed, allowing weak grains to deform 

faster than strong grains. The bulk stress is calculated 
after each strain increment along a predetermined strain 
path and adjusted to satisfy bulk compatibility. Self- 
consistent theory was originally conceived to describe 
the elastoplastic deformation of composite material 
(KrOner 1961). It has successfully predicted the strength 
of metallic and ceramic polycrystals between the uni- 
form strain rate and stress bounds (e.g. Hutchinson 
1976). Recently, the self-consistent theory has been 
extended to large strain, viscoplastic deformation of 
composite materials (Molinari et al. 1987). Viscoplastic 
self-consistent (VPSC) theory has proved useful in simu- 
lating texture in polycrystalline, monomineralic rock 
(quartzite, Wenk et al. 1989) and polymineralic rock 
(peridotite, Wenk et al. 1991). However, the basic 
problem with using current VPSC theory to predict 
viscous composite strengths is that it neglects the effects 
of domainal structural heterogeneity on stress and strain 
partitioning within the aggregate. Self-consistency con- 
strains weak grains always to deform at lower stresses 
than stronger grains. This contrasts with microstructural 
observations below which suggest that on the supragran- 
ular scale, an interconnected matrix of weak grains can 
support higher flow stress than boudinaged layers of 
strong grains. The conceptual implications this bears for 
realistic modelling of heterogeneous polyphase flow are 
explored in the latter part of this paper. 

Tuilis et al. (1991) performed finite element modelling 
of both real and hypothetical two-phase microstructures 
to arrive at a simple empirical solution: the flow law for a 
two-phase rock is approximated by a power law that 
passes through the equiviscous point of the constituent 
phases on a stress vs strain rate diagram and has a creep 
exponent that is the volume-weighted, geometric mean 
of the end-member creep exponents (their equations 10- 
12). The authors point out, however, that this flow law 
does not strictly apply to the IWL microstructure (Fig. 1) 
at moderate to high mineral strength contrasts. This 
microstructure is ubiquitous in naturally deformed rocks 
over a broad range of compositions, homologous tem- 
peratures and strain rates (Handy 1990). 

A common feature of all the analytical solutions 
reviewed above is that bulk strength is modelled as a 
single, continuous function of composition, irrespective 
of the microstructure. To the extent that microstructure 
is specified at all (e.g. Wenk et al. 1991), no distinction is 
made between LBF and IWL microstructures. Yet the 
microstructures in naturally deformed rock indicate that 
stress and strain partition quite differently in these two 
microstructures (Handy 1990), especially in rocks with 
phases having moderate to high mineral strength con- 
trasts (re ~ 5). Therefore, two constitutive equations 
corresponding to these microstructures may provide a 
more realistic description of heterogeneous creep in 
mylonite. 

This paper adopts a phenomenologicai approach in 
placing quantitative constraints on the rheology of bi- 
mineralic mylonite. Microstructural observations in 
naturally deformed rocks are used to show how stress, 
strain and strain rate partition in rheologically and 
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structurally heterogeneous material. These obser- 
vations provide a conceptual basis for deriving flow laws 
for two-phase aggregates with idealized LBF and IWL 
microstructures. The IWL flow law is compared with the 
available rheological data for experimentally and natur- 
ally deformed bimineralic aggregates, as well as with 
empirical and analytical solutions in the literature for the 
creep of polyphase rock. The relative stability of LBF 
and IWL microstructures at steady-state creep is exam- 
ined in the context of a strain energy minimization 
criterion for microstructural equilibrium. Finally, the 
two-phase flow laws are used to estimate the effect of 
varied rock composition on the rheology of the litho- 
sphere. 

was dislocation recovery and creep. The strongly asym- 
metrical crystallographic and shape preferred orien- 
tations of quartz measured in these samples (c-axis 
patterns in fig. 6 of Handy 1990, fig. 8 of Handy & Zingg 
1991) is diagnostic of dislocation creep during predomi- 
nantly non-coaxial shear. Strain partitioning in these 
rocks can only be estimated qualitatively because: (1) 
there are no passive strain markers; and (2) the current 
grain shape may be the product of several cycles of grain 
coalescence and recrystallization (Urai et al. 1986). 
Despite these limitations, the qualitative conclusions 
drawn at the end of this section regarding stress and 
strain rate partitioning are expected to apply to any 
polyphase material undergoing dislocation creep. 

STRESS, STRAIN AND STRAIN RATE 
PARTITIONING IN MYLONITE 

Boudins in mylonite comprise either the same mineral 
as the matrix (Fig. 2) or a different mineral (Fig. 3). This 
structural heterogeneity reflects microscale rheological 
contrasts that are inferred to evolve from the nucleation 
and growth of rheological instabilities during progress- 
ive shearing (Fig. 2) or to stem from mineralogical 
heterogeneity that existed prior to shearing (Fig. 3). 
Measurement of the size of subgrains and dynamically 
recrystallized grains in different microstructural 
domains allows one to quantify the partitioning of creep 
stress in the rock during mylonitization provided that: 
(1) the grain size froze simultaneously in these domains 
at the end of mylonitization; and (2) subsequent defor- 
mation or annealing did not alter stress-sensitive micro- 
structures. Grain size is related to creep stress via the 
empirically and theoretically derived relation (e.g Twiss 
1977, 1986): 

z = 3-1/2Lt} -p, (1) 

where 6 is the diameter of subgrains or dynamically 
recrystallized grains and z is the creep stress of the 
material in simple, octahedral shear. The empirically 
derived material constants, L and p, are only valid for 
the dynamic recovery and recrystallization mechanism 
reported in the experimental calibrations in the litera- 
ture (references in Fig. 4). For quartz analysed in Fig. 2, 
this mechanism is progressive subgrain rotation and 
subsequent grain growth (dynamic recrystallization 
regime 2 of Hirth & TuUis 1992). The subgrains were 
measured with an optical microscope and had crystallo- 
graphic misorientations with neighbouring grains of 
about 1-10 °. Thus, the stress estimates reported below 
from optical subgrains cannot be compared with stress 
values determined from smaller subgrains visible only 
with a transmission electron microscope (e.g. White 
1976). In all analyses made here, the grain size measured 
in thin section was corrected for the two-dimensional 
truncation effect (Exner 1972, pp. 32-33). 

The piezometric relation in equation (1) is only appli- 
cable to mylonitic rocks like those in Figs. 2 and 3 for 
which the dominant strain accommodating mechanism 

Mylonite with low mineral strength contrast 

Mylonite with low mineral strength contrasts com- 
monly occurs in shear zones where high homologous 
temperatures and small grain sizes reduced strength 
ratios to less than an order of magnitude (e.g. quartz- 
feldspar mylonite in fig. 3 of Handy 1990). Unfortu- 
nately, estimating creep stress in all minerals of granitic 
or peridotitic mylonite is still impossible because experi- 
mentally calibrated piezometers are currently available 
for only one of the strain-accommodating minerals 
(quartz, olivine). A viable alternative is therefore to 
examine heterogeneously deformed monomineralic 
mylonite like the quartzite in Fig. 2. The same piez- 
ometers can be used to compare stress in all microstruc- 
tural domains. 

The quartz mylonite in Fig. 2 was deformed at mid- to 
upper-greenschist facies conditions (ca 350°C). Figure 
2(a) shows that the domains of unrecrystallized quartz 
comprise ribbon grains with high aspect ratios as well as 
globular grains with lower aspect ratios. These globular 
grains locally deflect the ribbons and the intercon- 
nected, dynamically recrystallized layers. The size of 
dynamically recrystallized grains and subgrains in the 
interconnected matrix is smaller in these deflected re- 
gions than in the undisrupted, planar regions between 
ribbon grains (compare area 2 with areas 1 and 3, Figs. 
2a and 4). This indicates that the creep stress is higher in 
the matrix adjacent to the more competent globular 
grain than in the vicinity of the less competent ribbons. 
The subgrains in the globular grain are consistently 
larger than in the ribbon grains (compare areas 4 and 5, 
Figs. 2a and 4). Observed in detail, the subgrain size 
generally decreases towards the edges of the globular 
and ribbon grains (Fig. 2b). The marginal grain size 
gradients are steeper in the globular grain than in the 
ribbons, but the poor definition and irregular shape of 
the subgrains near the ribbon rims preclude any reliable 
quantification of these gradients under the optical 
microscope. 

The variation in subgrain size amongst the domains in 
Fig. 2(a) is believed to reflect local stress gradients 
within the rock during mylonitization because: (1) there 
is no evidence for post-tectonic annealing and grain 
growth in any domain (i.e. neither straight grain bound- 
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aries nor stable grain boundary triple junctions were 
observed); (2) the size distribution of optical subgrains is 
unimodal within each microstructural domain. The first 
point indicates that the stress drop at the end of defor- 
mation was sufficiently fast to prevent the subgrain size 
in ribbon and globular grains from re-equilibrating with 
stress much later than in the matrix. The temperature at 
the end of mylonitization was also sufficiently low, or 
decreased quickly enough, to inhibit annealing. The 
second point suggests that post-mylonitic stresses were 
never high enough to reset the microstructures. There- 
fore, the aforementioned subgrain size gradients in the 
rims of the globular and ribbon grains are interpreted to 
reflect sharp increases in creep stress from the more 
competent domains to the incompetent, dynamically 
recrystallized matrix. The disparity in the creep stresses 
between the contiguous matrix and the elongate, un- 
recrystallized grains suggests that there may have been 
considerable slip along their mutual boundaries. 

Mylonite with high mineral strength contrast 

Flow in quartz-feldspar granitic rock sheared at mid- 
to upper-greenschist facies conditions is much more 
heterogeneous than in the pure quartz mylonite above 
(compare Figs. 2a and 3). Quartz forms an intercon- 
nected matrix of dynamically recrystallized grains that 
envelop rounded feldspar grains. This reflects the high 
strength contrast between quartz and feldspar at these 
conditions. The quartz grains are both smaller and more 
elongate between the impinging feldspar grains than 
where the feldspar grains are further apart (Fig. 3). 
Thus, stress, strain, and strain rate were locally much 
higher in the quartz matrix between the feldspar grains 
than elsewhere. As in Fig. 2 above, the preservation of 
unstable grain boundaries and triple junctions in quartz 
indicates that the stress drop at the end of deformation 
was fast enough to freeze in stress-dependent grain size 
gradients on a very small scale (Handy 1990, Prior et al. 
1990). In contrast to quartz, the feldspar grains show few 
traces of internal strain. Although the feldspar grains 
sometimes contain evidence for local stress concen- 
tration (e.g. stress twinning near mica inclusions), the 
average stress within these grains during mylonitization 
is inferred to have been low, certainly less than the creep 
and fracture strengths of feldspar at the ambient press- 
ure, temperature and strain rate of deformation. 

Handy (1990) has shown that at high shear strains, a 
crude foliation comprising elongate clusters of strong 
grains develops parallel to the shearing plane (see his fig. 
2b). The greater the aspect ratio of the strong grain 
clusters, the lower the stress concentration in the matrix 
and the more nearly uniform the stress distribution 
within the aggregate (Handy 1992). This raises the basic 
question of whether the IWL microstructure is a steady- 
state configuration or whether it only represents an 
intermediate stage in a continuous evolution towards 
perfect interconnectivity of both phases. 

There is convincing evidence that the IWL micro- 
structure is indeed a steady-state configuration: shearing 

of perfectly layered, viscous materials leads to boudi- 
nage of the stronger layers and coalescence of the weak 
layers (e.g. fig. 1.8 in Ramsay & Huber 1987). Perfectly 
layered materials are therefore unstable with respect to 
the IWL structure. Likewise, two-phase aggregates with 
a LBF microstructure are unstable over a broad range of 
compositions and breakdown to an IWL microstructure 
(Jordan 1988, Handy 1990, discussions below). Means 
(1981) cites the cyclic growth and destruction of micro- 
structural elements as diagnostic of steady-state folia- 
tions. In the quartzite mylonite in Fig. 2, the boudinaged 
ribbon and globular grains are inferred to have coa- 
lesced from smaller protograins preserved in less de- 
formed rock outside of the shear zone (fig. 8 in Handy 
1987). Means & Dong (1982) and Urai et al. (1986) 
present microstructural evidence for the cyclic growth 
and dynamic recrystallization of ribbon grains during 
mylonitization. Similarly, the interconnected layers of 
dynamically recrystallized quartz in Fig. 2 contain the 
entire spectrum of grain sizes and shapes, from small, 
equant, freshly nucleated grains to larger, elongate 
older grains. Strain-invariance is an important charac- 
teristic of the IWL microstructure because it means that 
stress and strain rate partitioning within the aggregate 
can be related to steady-state bulk rheology. 

Inferred stress and strain rate partitioning across 
rheological interfaces 

Based on the piezometric measurements above, in- 
ferred stress and strain rate profiles across the interface 
between weak and strong phases in IWL and LBF 
microstructures are drawn schematically in Fig. 5. Each 
diagram in Fig. 5 includes two sets of solid vertical lines 
representing the relative levels of stress and strain rate 
for the limiting cases of homogeneous stress and homo- 
geneous strain rate within the polyphase aggregate. 

For rock with IWL structure, one might expect the 
stresses and strain rates of the constituent phases always 
to fall between the uniform stress and uniform strain rate 
bounds (hatched areas, Fig. 5a). According to the 
bounding theorems approach, the highest possible stress 
and strain rate in the weak phase occur when both 
phases are interconnected and deform at the same stress 
on either side of a coherent interface (curve 1, Fig. 5a). 
In nature, however, only the weak phase is intercon- 
nected and slip along incoherent phase boundaries 
maintains strain compatibility within the aggregate. As 
shown in the previous section, this condition can lead to 
higher stress in the weak layers than in the strong 
boudins. This accords with continuum mechanical 
models that predict reduced flow stress in boudinaged 
layers and concomitant stress concentration in the adjac- 
ent incompetent layers subparallel to the shearing plane 
(Str6mg~rd 1973, Weijermars 1991). Because viscous 
flow is isochoric and the deformation is compatible, the 
weak phase is inferred to deform at a higher average 
stress and strain rate than at the uniform stress bound 
(curve 3, Fig. 5a). Conversely, the stronger phase de- 
forms at a lower average stress and strain rate than at this 
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Fig. 2. (a)Heterogeneously deformed quartz mylonite comprising an interconnected matrix of dynamically recrystallized 
grains (e.g. areas 1-3) surrounding unrecrystallized ribbon (e.g. area 4) and globular grains (area 5). Numbers correspond 
to areas in which stress-dependent grain size was measured (see Fig. 4). Section cut parallel to X Z  fabric plane. Crossed 
polarizers, frame dimensions: 11.5 x 7.7 mm. (b) Subgrains at the interface between ribbon grains (ri) and dynamically 

recrystallized matrix (m) in quartz mylonite. Crossed polarizers, frame dimensions: 1.4 x 1.0 mm. 
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Fig. 3. Dynamically reerystallized quartz between two feldspar grains (labelled f) in a greenschist facies mylonite. Section 
cut parallel to X Z  fabric plane. Crossed polarizers, frame dimensions: 1.4 x 1.0 ram. 

292 



Flow laws for rocks containing two non-linear viscous phases 293 

10000 ]~ Ree~mdt=ed Gr=r~ 4 
~ \ o 7  1 Twis8 (1977) 
"L~ ,~  2 Morclor era/. (1977) 
1 ~  I,~'~ 3 Christle ~',~. (1980) 

4nnnJ ~ - ~ . .  40rd&Chdlllio(1984) 

,,~,,,,,,~"~._~ ~%.~ ~ .  6 TwOs (1977) 

O'I 
1 o 

- 

log ~quartz 1 2 ~, 
. . . . . . . . .  I . . . . . . . . .  ! . . . .  • 

2 s~ c::~r 
I'D S IBBBI E:~ r 

m 4 smUU 

5- s'=n 
10 100 

6quar tz  11 ~m) 

Fig. 4. Plot of creep stress vs dynamically recrystallized grain size (r) 
and subgrain size (s) for quartz in the various microstructural areas 
numbered  in Fig. 2(a). Length of grain size bars indicates population 

standard deviation of grain size. 

bound. Two conditions are expected to promote such 
stress partitioning: (1) the rock comprises small to 
moderate amounts of weak phase; and/or (2) the stress 
dependence of strain rate in the strong phase signifi- 
cantly exceeds that in the weak phase (i.e. high ratios of 
the creep exponents, ns/nw). For rock containing greater 
volume proportions of weak phase and/or phases with 
lower ns/nw ratios, the stress in the strong boudins 
exceeds that in the weak layers at most bulk strain rates 
and two-phase compositions (curve 4, Fig. 5a). Gener- 
ally, the partitioning of stress and strain rate as well as 
the amount of interracial slip between the phases be- 
comes more pronounced with increased mineral 
strength contrast and/or with decreased volume pro- 
portions of incompetent material. 

The LBF structure is rarely observed or identified in 
highly strained rock (see fig. 2a in Handy 1990 for a low 
strain example). This is due partly to the ambiguous 
criteria for distinguishing strong from weak boudinaged 
layers in IWL and LBF structures, particularly at low 
mineral strength contrasts (Fig. 1). It may also reflect 
the inherent instability of the LBF structure at high 
strains and moderate to high volume proportions of 
weak phase (Handy 1990 and below). So unfortunately, 
no natural example of an LBF structure with stress 
dependent microstructures could be analysed here. 
However, Treagus & Sokoutis (1992) have shown that 
non-linear composite silicon materials with low mineral 
strength contrast (~c = 1.66) in an LBF structure deform 
at nearly uniform shear strain rate to strains of y = 1.15 
in a simple shear box (see their figs. 5b and 9b, curve 2 in 
Fig. 5b of this paper). Deviations from homogeneous 
strain rate occur in the immediate vicinity of the phase 
boundaries. This is because weak and strong phases are 
constrained to deform both compatibly and at similar 
rates within the load bearing framework, thus inducing 

large differential stresses at these boundaries. These 
localized differential stresses are relaxed somewhat if 
the phases slip with respect to each other. The nature of 
this slip, as well as the stresses and strain rates at the 
phase boundaries depend on strain-dependent changes 
in the configuration of the weak pockets. 

In the absence of detailed studies of LBF microstruc- 
tures, it is useful to draw an analogy between the 
microstructural evolution of porous polycrystalline 
aggregates (e.g. Ashby et al. 1979) and rocks with an 
LBF microstructure. Similar to voids or cavities in 
porous plastic aggregates, the pockets of weak phase are 
inferred to become more elongate with progressive 
strain until either: (1) their shape stabilizes within limits 
corresponding to cyclic growth and boudinage at steady 
state; or (2) their growth becomes unstable and they 
coalesce to form interconnected weak layers. At steady 
state (case 1), pocket growth involving high strain rate in 
the weak phase alternates with pocket boudinage involv- 
ing high strain rate in the adjacent strong framework 
(curves 5 and 6 in Fig. 5b). Cyclic growth and boudinage 
go on simultaneously within the LBF microstructure, so 
that the rock as a whole still deforms at or near uniform 
strain rate. The coalescence of weak pockets is inhibited 
by dynamic recrystallization in the strong phase of the 
LBF microstructure, which facilitates rapid ductile flow 
and stress relief in the neck regions between pockets 
(Ashby et al. 1979). Creep instabilities are generally 
suppressed in rock comprising a strong phase with low 
stress sensitivity (i.e. low values of the creep exponent, 
n) and/or phases with similar bulk and shear moduli. In 
case (2) above, weak pockets coalesce when the stress 
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Fig. 5. Schematic profiles of shear stress and shear strain rate across a 
rheological interface within a viscous composite material at steady- 
state comprising: (a) an IWL microstructure; and (b) an LBF micro- 
structure. Hatched area contains stresses and strain rates between 
bounds for uniform stress (curve 1) and uniform strain rate (curve 2). 
Dashed and dotted curves in (a) are inferred stresses and strain rates in 
an IWL microstructure bearing constituent phases with high ns/nw 
ratios (curve 3) and low n J n .  ratios (curve 4). Dashed and dotted 
curves in (b) represent  inferred stress and strain rate in an LBF 
microstructure during cyclic growth (curve 5) and boudinage (curve 6) 

of weak products at steady state (see text). 
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Fig. 6. Microstructures modelled in this paper for rocks with a load- 
bearing framework (LBF) and interconnected weak layers (1WL) 
undergoing plane strain, simple shear. Strain compatibility is depicted 
schematically as the balance of gaps and overlaps (hatched areas) 
produced by the heterogeneous deformation and rotation of inclusions 
during progressive simple shear. Dashed lines indicate configuration 
of phase boundaries for the ideal case of plane strain, homogeneous 

simple shear. 

concentration at the pocket tips becomes sufficiently 
large to induce unstable flow in the neck regions be- 
tween elongate weak pockets, causing the pockets to 
propagate like tensile microcracks (Griffith et al. 1979). 
In contrast to voids, however, the weak pockets have 
finite values of the bulk and shear moduli. For a given 
strain, weak pockets are therefore expected to remain 
stable to higher volume proportions of weak phase and/ 
or to require greater strain to coalesce than voids. 

A significant point to emerge from the microstructural 
analyses above is that the stress contrast of two phases 
within a composite material differs considerably from 
their strength (i.e. competence) contrast. Strength con- 
trast depends on the material parameters of the constitu- 
ent phases and on the bulk strain rate, temperature and 
pressure, whereas stress contrast varies with the strength 
contrast, the volume proportions, and the distribution of 
the phases in the composite. This distinction becomes 
important in the next section. 

PHENOMENOLOGICAL FLOW LAWS FOR NON- 
LINEAR VISCOUS TWO-PHASE MATERIALS 

General conditions and assumptions 

Consider a hypothetical two-phase rock undergoing 
plane-strain, simple shear at constant bulk shear strain 
rate, ~r. The volume proportions of the two minerals in 
the rock remain constant with strain. These phases form 
a steady-state foliation (Means 1981) that is aligned 
subparallel to the plane of shear. In an ideal LBF 
microstructure (Fig. 6a), this foliation comprises a 

strong phase containing a pocket of weak phase, 
whereas in an ideal IWL microstructure the foliation 
consists of a weak matrix surrounding a stronger phase 
(Fig. 6b). In both microstructures, all mineral phases in 
the rock are viscous isotropic materials that deform 
compatibly and isochorically by dislocation creep. Any 
dilatancy within, or mass-transfer between, the phases is 
assumed to be negligible. Note that for the strain to be 
compatible in the LBF and IWL microstructures in Fig. 
6, the phases must deform heterogeneously and their 
boundaries must accommodate slip. This is especially 
true of rock with IWL structure that contains large 
volume proportions of a relatively strong phase under- 
going noncoaxial flow to high shear strains. 

A key to deriving the polyphase flow laws in the next 
section is the notion that the rate o f  viscous strain energy 
dissipation in a rock is equal to the sum of  the effective 
rates of  strain energy dissipation in the constituent phases 
c~f that rock: 

E~v,. = ~ riY, iV,., (2) 
t--~- I 

where the rate of viscous shear strain energy or power 
dissipated in a rock,/~,., of volume Vr is equal to the sum 
of the inner products of the shear stress and incremental 
shear strain rate tensors, ri and ~)i, and the volume, V/, of 
each of the N constituent phases, i. For the two-phase 
aggregate considered in this paper, equation (2) simpli- 
fies to: 

/~, = r~,~,/'wq),, + r~y~q~s, (3) 

where )w and )~ are the octahedral shear strain rates of 
the weak and strong phases, r w and r~ are the corre- 
sponding octahedral shear stresses in these phases, and 
where @w and q~ are the volume proportions of weak and 
strong phases in the two-phase rock. The volume of the 
whole rock is set equal to one, so that the volume 
proportions of the phases sum to unity, @w + q~s = 1. 
Equations (2) and (3) are actually adaptations of Ein- 
stein's ( 1909, 191 l) concept of viscous energy dissipation 
in slowly deforming, viscous suspensions containing 
rigid spheres. In this context, it is important to point out 
that shearing of the rock is assumed to be isothermal. 
The viscous strain energy is dissipated quickly enough to 
avoid shear-heating and any feedback effects this might 
have on the rheology (Hobbs & Ord 1988) or chemical 
stability (e.g. Rutter & Brodie 1987) of the phases 
making up the rock. 

Because flow of the hypothetical rock is isochoric and 
strain compatibility is maintained amongst the constitu- 
ent phases (Fig. 6), the effective (i.e. volume-weighted) 
average strain rates of  the weak and strong phases are 
additive in both LBF and IWL microstructures: 

),  = 55w9,~ + 9~q~, (4) 

where 9w and 9~ are the averaged octahedral shear strain 
rates of the weak and strong phases, respectively, and 
where q~w and q~, have been defined above. This relation 
is important in two respects: first, it allows the average 
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strain rate of a phase to be calculated if the bulk strain 
rate, the volume proportions of phases, and the average 
strain rate of the remaining phase are known (equation 9 
below); second, because slip is allowed between the 
phases equation (4) implies that the average stress in the 
two phases can differ. This condition pertains especially 
to the IWL microstructure. 

Strain rate is related solely to the differential creep 
stress in the rock because inertial forces are negligible at 
the slow, natural strain rates considered here 
(10-9-10 -15 s-X). Therefore, the empirically derived 
constitutive equation for creep relating shear stress to 
shear strain rate in the constituent phases in equations 
(3) and (4) is (after Weertman 1968): 

ri=exp(l{~T+ln[3(n,~/2Ai]}),  (5) 

where ~ is the average shear strain rate in the i-th phase 
at temperature T, Qi is the activation enthalpy of creep, 
n i is the creep exponent and Ai is a pre-exponential 
function. The factor 3 (n+~)/2 (Nye 1953, Stocker & 
Ashby 1973, Schmid et al. 1987) converts the stress and 
strain rate tensors from the pure shear configuration of 
the triaxial experiments to the plane-strain simple (octa- 
hedral) shear configuration assumed here. The value of 
ri obtained at an average shear strain rate in equation (5) 
slightly exceeds the average shear stress because of the 
non-linear relationship between stress and strain rate in 
minerals undergoing dislocation creep (n > 1 in 
equation 5). This discrepancy in stress values is greater 
at low strain rates and for materials with large creep 
exponents. Inaccuracies in stress estimates arising from 
the assumption of average strain rate for the constituent 
phases are discussed at the end of the next section. 

Deriving composite flow laws for rocks with ideal LBF 
and IWL microstructures 

In a rock deforming at steady state with an ideal LBF 
microstructure, the load-bearing framework of strong 
phase forces the pockets of weak phase to strain at the 
same rate, regardless of any rheological contrast be- 
tween the phases (Fig. 6a). The experiments of Treagus 
& Sokoutis (1992) reviewed above indicate that devi- 
ations from uniform strain rate are very small, justifying 
the simple assumption that the average strain rate of the 
constituent phases is uniform and equals the strain rate 
of the rock. Therefore, the viscous shear strength of a 
two-phase rock with an LBF microstructure, gr-LBF, is 
obtained by substituting the bulk shear strain rate into 
all strain rate terms in equation (3), then dividing the 
resultant power dissipation for the whole rock by the 
same bulk shear strain rate. This yields the familiar 
upper bound strength of polyphase rocks: 

C B F  ~-- rwr~/~ w d- rsr~s , (6) 

where rwr and rsr are the octahedral shear stresses in 
weak and strong phases at temperature, T, and at the 
overall shear strain rate of the rock, )'r. The strain energy 

approach used here to obtain equation (6) for a rock 
with LBF structure contrasts with past derivations of this 
equation which employ a continuum mechanics 
approach and assume that both phases are contiguous 
within the shearing plane (e.g. Weijermars 1992). 

Deriving a steady-state constitutive equation for rocks 
with an ideal IWL microstructure (Fig. 6b) is more 
difficult because stress and strain rate partitioning in the 
aggregate depends on the viscous strength contrast be- 
tween the constituent phases, as well as on the relative 
amounts of these phases. The viscous shear strength 
contrast, rc, is defined here as: 

rc = rs..._r.~, (7) 
rwr 

where rsr and rwr are the octahedral shear stresses in the 
strong and weak phases measured separately (i.e. out- 
side the aggregate) at temperature, T, and at a reference 
shear strain rate that equals the overall shear strain rate 
of the aggregate, Yr. The dependence of stress and strain 
rate partitioning on rc is constrained by considering the 
following limiting conditions from the microstructural 
observations in the previous section: 

(a) As the viscous strength contrast of the phases 
becomes infinite, the bulk strain rate is concentrated 
into the volume of rock comprising the weaker phases, 
while the average strain rate of the stronger phase 
approaches zero: 

where 

fr w 1 , 0, 

0 < ~ w < l .  

(b) If the viscous strength of the two phases is equal, 
then the strain rate of the rock is equal to the strain rate 
in both phases (homogeneous deformation) for all vol- 
ume proportions of strong and weak phases: 

~w=~s=~ ' r  at 0 < ~ w < l .  

These constraints are now used to seek an expression 
that describes how the average strain rate in the weak 
phase varies with the strain rate of the rock, and with 
both the volume proportions and the viscous strength 
contrast of the two constituent phases. This expression 
has a form similar to the limit in condition (a) above: 

ffw ":" ~r~w x, (8) 

where x is a function of rc for 1 -< rc -< oo. The function x, 
here named the strain rate concentration function, is a 
measure of the rc-sensitivity of strain rate partitioning in 
the rock. Specifically, it determines how much of the 
total strain rate is accommodated by the volume of weak 
phase. An expression analogous to equation (8) for the 
average strain rate of the strong phase is obtained by 
substituting equation (8) into equation (4) and solving 
for ffs: 

~s = yr(1 - ~w)-I(1 - @l-x). (9) 
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Fig. 7. Strain rate concentrat ion vs volume propor t ion  of weak phase 
in two-phase  aggregates with an IWL microstructure.  (a) is a plot of 
equat ion (8), (b) is a plot of equat ion (9). Both equat ions incorporate  
the function x = (1 -- I/r~,) in equat ion (10), allowing the diagrams to 
be contoured for different values of the viscous strength contrast ,  r c. 

The r~-dependence ofx  in equations (8) and (9) can be 
constrained in the following way: (1) 0 -< x <- 1 for 0 < q),, 
< 1 (conditions a and b); (2) x ~ 1 as re --> oc (condition 
a); (3) x --+ 0 as r~ -+ 1 (condition b). The simplest 
expression of x that is a smooth function of r~ and that 
satisfies all the constraints above is: 

x =  1 .. _1 whenl )<q~ ..... ~ 1. (10) 
?'c 

In monomineralic rocks, x is undefined and so obviously 
~w = ),- at q~,,. = 1 and 9~ = ~'~r at q}w = 0. Although 
equation (10) is certainly not a unique solution to the 
constraints above, this writer could find no constraints 
for values of r~ between 1 and o0 to warrant the use of a 
more complicated function for x. Despite this limitation, 
equation (10) provides a reasonable approximation of 
the r~-sensitivity of strain rate partitioning in two-phase 
aggregates (see next section). 

Figures 7(a) & (b) furnish a direct demonstration of 
equations (8) and (9), respectively, for varied strength 
contrasts of the constituent phases in a hypothetical two- 
phase rock. They illustrate the physical significance of 
the strain rate concentration factor, x, in equation (10). 
The concentration of average strain rate and creep stress 
into the weaker phase of a rock with IWL microstructure 
increases with decreasing abundance of that phase and/ 
or with increasing viscous strength contrast between the 

two phases (Fig. 7a). Conversely, the average strain rate 
of the strong phase decreases with decreasing abun- 
dance of that phase and increasing strength contrast 
between the phases (Fig. 7b), Figure 7(a) also indicates 
that the average strain rate (and therefore also stress) in 
the interconnected weak phase of an IWL structure rises 
to infinity at sufficiently low values of q~w. This is geologi- 
cally unrealistic because creep stress cannot exceed the 
brittle strength of the material. In this paper, it is 
proposed that the upper limits to the stress and strain 
rate in the interconnected weak phase coincide with a 
balance in the rate of strain energy dissipated by the LBF 
and IWL structures at equal bulk strain rate and tem- 
perature. This criterion for structural stability is dis- 
cussed further belo~. 

The rate of viscous shear strain energy dissipated in a 
rock with an IWL microstructure, --r#IWL, is obtained by 
substituting equations (8) and (9) into all the strain rate 
terms in equation (3). Dividing the resultant ElrWL by ~)r 

yields the viscous shear strength of a rock with an IWL 
IWL. microstructure, r, . 

tWl I t I v, = r,,.q~w + r~(1 -- q~,,.)- (1 -- q~, "), (11) 

where % and 1 s are the octahedral shear stresses in the 
weak and strong phases, respectively, at 9w and 9~ and at 
given ~,,. 

To summarize this section, equations (6) and (11) 
express the steady-state viscous strength of two-phase 
rocks with LBF and IWL microstructures solely in terms 
of the bulk strain rate, the temperature,  the volume 
proportions of the constituent phases, and the rheologi- 
cal constants of these phases. The microstructure with 
the lower overall rate of viscous strain energy dissipation 
in equation (3) is the configuration expected to remain 
stable in a rock deforming at a given temperature and 
strain rate. 

COMPARISON OF THEORETICAL FLOW LAWS 
WITH COMPUTED AND EXPERIMENTAL 

RHEOLOGIES OF BIMINERALIC ROCK 

Currently, only two experiments on bimineralic 
aggregates from the literature can be compared with the 
flow laws in equations (6) and (11): (1) the finite element 
simulation of creep in plagioclase-clinopyroxene aggre- 
gates (Tullis et  al. 1991); and (2) the laboratory defor- 
mation of diabase (Shelton & Tullis 1981) at mineral 
strength contrasts of 4 and less. These experiments were 
chosen because both phases in the aggregates deformed 
by dislocation creep and their rheologies are well 
known. Use of these data also facilitates a direct com- 
parison of the two-phase flow laws proposed in this 
paper with the empirically derived flow law of Tullis et 

al. (1991). Unfortunately, bimineralic aggregates with 
higher viscous strength contrasts (Price 1982, Jordan 
1987) contain strong phases that deformed cataclasti- 
calty and their strength-composition data are therefore 
unsuited for comparison with the theoretical flow laws in 
this paper, 
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Fig. 8. (a) Log shear strain (MPa) vs log shear strain rate (s -1 ) diagram for a hydrous clinopyroxene-plagioclase aggregate. 
Extrapolated end-member  flow laws (dotted curves), uniform stress and uniform strain rate bounds (dashed curves), IWL 
flow law for cpx-plag rock from equation (11) in this paper  (solid curve), empirical flow law for diabase of Tullis et al. (1991) 
(dashed-dot ted curve), computer-simulated strengths for deformed diabase (grid 3 of Tullis et al. 1991) (large dots). 
Rheological parameters  for constituent phases are taken from experiments of Shelton & Tullis (1981) performed at 1000°C 
and 10 -4 s - l :  albitic plagioclase: n = 3.9, Q = 234 kJ m -1 , A = 2.51 × 10 -6 MPa -n s-1 ; clinopyroxene: n = 2.6, Q = 335 kJ 
m - l ,  A = 15.85 MPa -~ s -1. (b) Plot of normalized shear stress vs volume proportion of plagioclase for hydrous 
plagioclase-clinopyroxene aggregates. Uniform stress and uniform strain rate bounds (dashed curves), theoretical flow law 
for cpx-plag rock with IWL microstructure from equation (11) in this paper  (thick solid curve), empirical flow law of Tullis 
et al. (199l) (dashed-dot ted  curve), experimentally determined flow law for Maryland diabase from Shelton & Tullis (1981) 
(thick horizontal line). Note that this diagram is constructed for the same conditions as used by Shelton & Tullis (1981) to 
determine the flow laws of the constituent phases. Creep parameters  for the plagioclase and clinopyroxene end-members  

o 4 1 are identical to those in (a). Creep parameters  for Maryland diabase determined at 1000 C and 10- s- (Shelton & Tullis 
1981): n = 3.4, Q = 259 kJ m -1, A = 2 x 1 0 - 4 M P a - n  s - k  
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The stress vs strain rate diagram in Fig. 8(a) compares 
the synthetically computed and theoretically predicted 
creep stresses for a foliated diabase containing 36 vol. % 
plagioclase and 64 vol. % clinopyroxene, and deforming 
at a temperature of 1000°C with bulk shear strain rate 
ranging from 10 - 4  to 10 -12 s -1. At these conditions, the 
shear strength ratio between plagioclase and clinopyrox- 
ene varies from 4 (plag stronger than cpx, Yr = 10-4 s- 1 
through 1 (equiviscous point in Fig. 8a) to 2.65 (cpx 
stronger than plag, ~)r ---- 1 0 - 1 2  s-l)  • Both phases are 
highly contiguous in the foliation plane, with plagioclase 
slightly more interconnected than clinopyroxene (see 
fig. lb of grid 3 in Tullis et al. 1991). Figure 8(a) shows 
that the rock strength predicted with the IWL flow law 
(solid line) lies well within the strengths derived from the 
extrapolated end-member flow laws (dotted lines) and 
the uniform stress and uniform strain rate bounds 
(dashed lines) over the complete range of natural to 
simulated strain rates. However, the IWL flow law 
predicts consistently lower strengths for diabase than 
does the finite element simulation of Tullis et al. (1991). 

The normalized rock strength vs composition diagram 
in Fig. 8(b) is constructed with the same flow laws as in 
Fig. 8(a) for a bulk shear strain rate of J r  = 1 0 - 4  s - l "  

Normalized strength on the left-hand axis of Fig. 8(b) is 
merely the strength of the rock normalized to the 
strength of the stronger phase (the strength of clinopyr- 
oxene is set equal to 1) and scaled against the strength 
contrast, rc, of clinopyroxene to plagioclase on the 
right-hand axis. The strength for rocks with the ideal 
LBF, uniform strain rate flow law and the IWL flow law 
bracket the experimental creep strength of Maryland 
diabase at 7r = 10-4 S-I (horizontal bar in Fig. 8b). For 

comparison, the empirical flow law of Tullis et al. (1991) 
calculated with their equations (10)-(12) is an excellent 
fit both to the experimental diabase strength (Fig. 8b) 
and to their computer-simulated diabase strengths 
across the entire range of strain rates and bimineralic 
compositions (dashed-dotted curve, Figs. 8a & b). 

The ideal LBF, uniform strain rate flow law clearly 
overestimates experimental and computer-simulated 
diabase strengths because both plagioclase and clinopyr- 
oxene constitute lenticular layers within the foliation 
plane. There are two main reasons why the IWL flow 
law underestimates the experimental and computer- 
simulated diabase strengths: (1) the re-dependence of 
the strain rate concentration function, x, may be less 
than that derived using the available constraints in 
equation (10); (2) the use of average strain rates in 
equations (8) and (9) neglects the effect of localized 
stress concentration on bulk rock strength. Where layers 
of weak phase are constricted between stronger phases 
(e.g. Fig. 3), creep stress and strain rate rise non-linearly 
above ambient levels in the IWL microstructure (Handy 
1990, 1992). This effect becomes more pronounced with 
increasing r c and increasing amounts of strong phase in 
the rock. 

In summary, two-phase rock strength predicted with 
equation (11) for an IWL microstructure is closer to the 
uniform stress bound than to the uniform strain rate 
bound over a broad range of compositions. In aggre- 
gates with low mineral strength contrasts (re -< 4) and/or 
with low volume proportions of a weak phase (@w < 
0.1), the aggregate strength approaches the uniform 
strain rate bound for an ideal LBF microstructure 
(equation 6). 
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Fig. 9. Structural stability diagram for quartz-feldspar rock. Rock strength on the left-hand axis is normalized to the 
viscous strength of feldspar (strength of feldspar is set equal to 1). Viscous strength ratio of feldspar to quartz increases 
downwards on the right-hand axis. The thick curve marks the boundary between the LBF and IWL fields. The thin curves 
are contours of normalized rock strength at different values of mineral strength contrast, r~. Microstructural insets depict 
the steady-state configuration of strong phase (stippled), weak phase (white) and flow lines (dashes). Creep parameters of 
the hydrous end-member phases: quartzite: n = 2.4, Q = 163 kJ m -1, A = 10 -5 MPa -~ s - I  (Jaoul et al. 1984); albitic 

plagioclase: n = 3.9, Q = 234 kJ m - I  A = 2.51 × 10 --6 MPa -" s -I  (Shelton & Tullis 1981). 

IMPLICATIONS FOR THE RHEOLOGY AND 
MICROSTRUCTURE OF POLYMINERALIC 

ROCKS 

Figure 9 is a structural stability diagram for quartz- 
feldspar rock spanning the compositional range from 
diorite, through granite, to quartzite. It contains LBF 
and IWL fields contoured for normalized rock strength 
at different mineral strength contrasts. The microstruc- 
tural insets in Fig. 9 show how steady-state polyphase 
configuration varies within the diagram as a function of 
composition and mineral strength contrast. 

Diagrams like Fig. 9 can be constructed for any two- 
phase aggregate with equations (6) and (11). The bound- 
ary between the LBF and IWL fields is the locus of 
points at given values of @w, V,, and temperature where, 
according to these equations, both microstructures yield 
the same bulk strength and so dissipate identical 
amounts of strain energy per unit time. On either side of 
the LBF-IWL boundary, the more stable microstruc- 
ture is assumed to be that configuration which is weaker 
at a given ~r and therefore dissipates less strain energy 
per unit time during steady-state deformation. Each 
contour of normalized rock strength at a constant 
mineral strength contrast is determined for a given 
temperature and bulk shear strain rate in equations (6) 
(LBF field) and (11) (IWL field). 

The IWL microstructure is predicted to be more 
stable than the LBF microstructure during steady-state 
flow over a broad range of compositions and viscous 
strength contrasts between the constituent phases (Fig. 

9). This is consistent with the observation that the IWL 
microstructure is much more common than the LBF 
microstructure in highly strained rocks, even at low @w 
values. The critical volume proportion of weak phase at 
the boundary between the LBF and IWL microstruc- 
turai stability fields depends on the mineral strength 
contrast (see detailed inset, Fig. 9). This is a function of 
both the creep parameters of the constituent phases and 
the temperature and bulk strain rate of deformation. For 
given temperature and bulk strain rate, low ratios of the 
creep activation energies (Qs/Qw < 1.5) and high ratios 
of the creep exponents (nflnw > 1) expand the stability 
field of the LBF microstructure to values of @w - 0.1 in 
Fig. 9. Moderate to large QflQw ratios (>1.5) and low 
nJnw ratios (<1) restrict the LBF microstructure to 
values of ~w << 0.1 in the upper left-hand corner of Fig. 
9. 

The contours in the LBF field o£ Fig. 9 indicate a 
nearly linear dependence of normalized aggregate 
strength on two-phase composition at low ~w values, 
whereas the contours in the IWL field are highly non- 
linear, especially at high mineral strength contrasts and 
low @w values. While this obviously reflects the assump- 
tions made in equations (6) and (11), it is also intuitively 
reasonable: If strong phase could be added to a rock 
comprising two phases at given re, the rate of work 
would increase more rapidly in a rock with IWL micro- 
structure where the interconnected weak phase deforms 
much faster than the strong phase, than in a rock with 
LBF microstructure where the pockets of weak phase 
deform at same rate as the framework of strong phase. 
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Fig. 10. Inferred strain-dependent evolution of the LBF and IWL fields in a schematic structural stability diagram: (a) 
undeformed state; (b) low strain stage typically achieved in triaxial experiments; (c) intermediate strain stage; and (d) 
steady state. Arrows indicate the strain-dependent movement of the LBF-IWL boundary (thick curve) and a contour of 

normalized rock strength at constant rc (thin curve). 

The difference in the strain rates of the weak phase in the 
two microstructures grows with increasing viscous 
strength contrast between the phases (recall Fig. 7). 

The hypothesis of strain energy minimization 
employed above to distinguish fields of microstructural 
stability during steady-state creep only compares end- 
member states of power dissipation for LBF and IWL 
microstructures. It does not describe the structural and 
mechanical changes leading to these states. Figure 10 is a 
qualitative attempt to illustrate this evolution based 
partly on insight from experimental triaxial deformation 
of two-phase aggregates and partly on inference. In the 
unstrained state (Fig. 10a), the configuration of the LBF 
and IWL fields reflects the geometry and distribution of 
phases in the rock, and therefore also mirrors the rock's 
previous geologic history. As drawn in Fig. 10(a), the 
broad LBF field betrays extensive contiguity of the 
strong phase, such as might occur in a massive magmatic 
rock. Experiments show that after only modest axial 
strains (10-30%) the load-bearing framework of the 
strong phase disintegrates rapidly (Figs. 10a & b) as the 
weak phase flattens and interconnects to form micro- 
shear zones within the plane of shear (Le Hazif 1978, 
Jordan 1987). Rocks with low to moderate ~b w values 
that contain minerals with very high strength contrasts 
(r c > 10-100) behave like porous sintered aggregates 
(Tharp 1983) except that the pores or pockets of weak 
phase have finite strength. The LBF-IWL boundary in 
Fig. 10(b) is extended steeply downward to reflect this 
expectation (see discussion in Handy 1990). After 
further strain, the LBF field shrinks upwards and to the 
left in Fig. 10(c) as progressively smaller volume pro- 
portions of unstable weak pockets coalesce to form 
interconnected layers. The time and strain to coalesc- 
ence are inferred to be greater for lower values of rc 
and/or q~w (see Ashby et al. 1979). The contours of 
normalized rock strength in the LBF field remain 
stationary with strain, reflecting the constant strain rate 
condition within the aggregate. In the IWL field, how- 
ever, these contours migrate downward as progressive 
foliation development decreases stress concentration in 
the weak interconnected matrix (Jordan 1987, Handy 
1990). The strain-dependent transition from a LBF to an 
IWL microstructure can be likened to a spontaneous, 

irreversible change in the internal configuration of the 
rock. The steady-state LBF-IWL boundary in Fig. 10(d) 
may therefore reflect a thermodynamic state at which 
the rates of strain energy dissipation and configurational 
entropy dissipation in the two microstructures are equal 
and invariant with time and strain. 

The phenomenologically derived flow laws in this 
paper are conceptually more realistic in their treatment 
of microstructure than previous approaches reviewed in 
the Introduction. However, there are numerous points 
where the model of polyphase creep in this paper could 
be refined. The strain rate concentration function, x, is 
certainly more complicated than proposed in equation 
(10). There may exist additional constraints to those 
above that better define this function or that incorporate 
the nonlinear effects of stress concentration. In the 
absence of such constraints, x may be treated as a purely 
empirical function of r c and fitted to experimental 
strength vs composition relations as more data become 
available. Another shortcoming of the model is that it is 
only valid for mechanical and microstructural steady 
state. The model does not incorporate any of the inter- 
active feedback effects that strain-dependent changes in 
microstructure may have on rheology (e.g. Mitra 1978). 
The shape of the phases is not specified, although Tullis 
et  al. (1991) point out that this may not be a serious 
deficiency in the case of the LBF microstructure. Defor- 
mation mechanisms other than dislocation creep are not 
included in the model, even though cataclasis, diffusion 
creep and/or pressure solution mechanisms are fre- 
quently inferred to operate in at least one phase of many 
mylonitic rocks (e.g. White et al. 1980). Fueten & Robin 
(1992) suggest that viscous creep by pressure solution 
results in a parabolic variation of composite strength 
with two-phase composition (their fig. 1). Stress and 
strain configurations deviating from the plane-strain, 
simple shear geometry assumed here can significantly 
influence the rheology of heterogeneous materials, par- 
ticularly if there are fewer than the five independent, 
interconnected zones of weakness required to maintain 
strain compatibility in three dimensions (Von Mises 
criterion). Averaging the strain rate in all constituent 
phases (equation 4) simplifies the mathematics, but 
leads to a slight, consistent underestimation of compo- 
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Fig. II. Log shear strain (MPa) vs depth (km) diagrams for a crustal 
section comprising "granitic' quartz-feldspar upper crustal rocks and 
"gabbroic' feldspar-pyroxene lower crustal rocks. The diagram is 
constructed for an average geothermal gradient of 20°C km-l and a 
regional strain rate of I0 -~4 s - j .  Creep parameters of the hydrous 
end-member phases: quartzite (Jaoul et al. 1984), albitic feldspar 
(Shelton & Tullis 1981), clinopyroxene (Boland & Tullis 1986). 

Frictional sliding constants taken from Byerlee (1978). 

site viscous strength. Finally, the concept of viscous 
strain energy partitioning (equation 2) and the strain 
energy minimization criterion for structural stability 
require testing in the laboratory• Synkinematic micro- 
scopy of rock-analogue materials (Means 1981) is a 
promising way of testing these ideas. Pending further 
refinement, the model of polyphase flow proposed in 
this paper remains a first-order approach that provides 
relatively simple analytical solutions to the rheology of 
polyphase rocks. 

APPLICATIONS TO CRUSTAL RHEOLOGY 

The two-phase flow laws proposed above can be used 
to estimate the effect of varied rock composition on the 
rheology of the continental crust. In addition, the close 
relationship between microstructure and mineral 
strength contrast can be used to predict the steady-state 
microstructure of mylonites at various depths and com- 
positions. 

The shear stress vs depth profiles in Fig. 11 are 
constructed with equation (11) for the viscous creep of 
two-phase rocks and with the Navier-Coulomb law for 
frictional sliding in compression and extension (see 
Meissner & Strehlau 1982 for details of construction). 
The diagram is valid for an average geothermal gradient 
of 20°C km -~ and a regional shear strain rate of 10 - t 4  

s -~. The crustal section comprises quartz-feldspar and 
feldspar-pyroxene rocks, representing intermediate and 
basic rocks of the upper and lower continental crust, 
respectively. The foliation in all rocks is assumed to lie 
horizontally. Figure 11 includes curves for the pure 
constituent minerals in the rocks (dashed lines) and for 
selected values of ¢Pw from 0.1 to 0.8 (solid lines). 

According to the strain energy criterion of microstruc- 
rural stability outlined in the sections above, only the 
IWL microstructure is stabte over this compositional 
range in these rocks, so stress-depth curves for the LBF 
micmstructure are not shown. 

The curves in Fig. 11 indicate that rock composition, 
in addition to geothermal gradient and regional strain 
rate affect the viscous strength of the crust and the depth 
of the transition from frictional sliding to viscous creep. 
In quartz-feldspar rocks, as little as 10-20 vol.% of 
quartz reduces the composite viscous strength to less 
than half of that of feldspar and significantly raises the 
depth of the frictional to viscous transition from that of a 
pure feldspar rock (Fig. 11). The viscous strength con- 
trast between quartz and feldspar is sufficiently high (8 < 
r~. < 40) to justify the simple assumption that quartz 
governs the bulk strength for all two-phase compositions 
with ~Pw greater than 0.1. Clast-matrix microstructures 
are expected to predominate in quartz-feldspar rocks, 
except where syntectonic metamorphic reactions induce 
growth of weaker phases at the expense of feldspar (e.g. 
fig. 5 in Handy 1990)• In gabbroic rock, the disparate 
activation energies of plagioclase and pyroxene cause 
mineral strength contrasts to vary from 35 at 600°C (20 
km depth) to unity at 900°C (50 km depth) for the 
regional shear strain rate of 10 -14 s-r. At these depths 
and temperatures, pyroxene is expected to form boudins 
and clasts in weak matrix of interconnected feldspar. For 
temperatures greater than 900°C at the equiviscous 
point, the relative strength of pyroxene and feldspar 
inverts, and pyroxene is predicted to be the weaker 
interconnected phase. 

The predictive quality of Fig. 11 is limited by the 
simplifying assumptions underlying equation (11) and 
the poor accuracy of the extrapolated flow laws for the 
constituent phases (Paterson 1987). Nevertheless, the 
predictions are confirmed by observations in naturally 
deformed rocks: quartz and feldspar are inferred to be 
the weakest, interconnected phases, respectively, in 
granitic and gabbroic tectonites deformed under con- 
ditions ranging from the upper-greenschist to granulite 
facies (e.g. fig. 9b in Handy & Zingg 1991). 

There are many potential applications of the theory in 
this paper to other geological problems, ranging from 
the behaviour of kinematic indicators in mylonite to the 
interpretation of microstructural gradients across mylo- 
nitic shear zones. The phenomenological approach 
developed here may provide a realistic conceptual basis 
for future experimental and theoretical studies of micro- 
structural stability in mylonite. 
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